

PRACTICAL 6

1. WAP to find sum of n even numbers

```
Solution:
n=int(input("enter the value of n: "))
sum=0

for i in range(1, n+1):
    even=2*i
    sum+=even

print("The sum of the first", n, "even numbers is: ", sum,)
Output:
    enter the value of n: 19
    The sum of the first 19 even numbers is: 380
```

2. WAP to find sum of n odd numbers.

```
Solution:
n = int(input("Enter the value of n: "))
sum = 0

for i in range(1, 2 * n + 1, 2):
        sum += i

print("The sum of the first " ,n ," odd numbers is: ", sum)
Output:
Enter the value of n: 8
The sum of the first 8 odd numbers is: 64
```

3. WAP to find sum of the series 1+2^2+3^3+4^4+...n^n

```
Solution:
n = int(input("Enter the value of n: "))
sum= 0

for i in range(1, n + 1):
    sum+= i ** i

print(f"The sum of the series 1 + 2^2 + 3^3 + ... + {n}^{n} is: {sum}")
Output:
Enter the value of n: 10
The sum of the series 1 + 2^2 + 3^3 + ... + 10^10 is: 10405071317
```


4. WAP to find sum of the series 1+1/2+1/3+1/4+...+1/n

```
Solution:
n = int(input("Enter the value of n: "))
sum_of_series = 0

for i in range(1, n + 1):
    sum_of_series += 1 / i

print(f"The sum of the series 1 + 1/2 + 1/3 + ... + 1/{n} is: {sum_of_series}")
Output:
Enter the value of n: 12
The sum of the series 1 + 1/2 + 1/3 + ... + 1/12 is: 3.103210678210678
```

5. WAP to find sum of the series 1+1/2^2+1/3^3+1/4^4+...1/n^n

```
Solution:

n = int(input("Enter the value of n: "))

sum_of_series = 0

for i in range(1, n + 1):

sum_of_series += 1 / (i ** i)

print(f"The sum of the series 1 + 1/2^2 + 1/3^3 + ... + 1/{n}^{n} is: {sum_of_series}")

Output:

Enter the value of n: 15

The sum of the series 1 + 1/2^2 + 1/3^3 + ... + 1/15^15 is: 1.2912859970626636
```

6. WAP to find factorial of a number

```
Solution:

n = int(input("Enter a positive integer: "))

factorial = 1

if n < 0:
    print("Factorial is not defined for negative numbers.")

elif n == 0:
    print("The factorial of 0 is 1")

else:
    for i in range(1, n + 1):
        factorial *= i

    print(f"The factorial of {n} is: {factorial}")

Output:

Enter a positive integer: 12

The factorial of 12 is: 479001600
```


7. WAP to calculate and print the sums of even and odd integers of the first n natural numbers.

```
Solution:

n = int(input("Enter the value of n: "))

sum_even = 0

sum_odd = 0

for i in range(1, n + 1):

if i % 2 == 0:

sum_even += i

else:

sum_odd += i

print(f"Sum of even numbers among the first {n} natural numbers: {sum_even}")

print(f"Sum of odd numbers among the first {n} natural numbers: {sum_odd}")

Output:

Enter the value of n: 20

Sum of even numbers among the first 20 natural numbers: 110

Sum of odd numbers among the first 20 natural numbers: 100
```

8. WAP to find the sum of individual digits of a number.

```
Solution:
num = int(input("Enter a number: "))

sum_of_digits = 0

while num > 0:
    digit = num % 10
    sum_of_digits += digit
    num //= 10

print("Sum of the digits:", sum_of_digits)
Output:

□→ Enter a number: 15
    Sum of the digits: 6
```


9. WAP to reverse a number

```
Solution:
num = int(input("Enter a number: "))
reversed_num = 0
while num > 0:
    digit = num % 10
    reversed_num = (reversed_num * 10) + digit
    num //= 10

print("Reversed number:", reversed_num)
Output:
Enter a number: 25
Reversed number: 52
```

10. WAP to find sum of the series: 1-2+3-4+5-6+7... n

```
Solution:

n = int(input("Enter the value of n: "))
sum_of_series = 0
sign = 1

for i in range(1, n + 1):
    sum_of_series += sign * i
    sign *= -1

print(f"The sum of the series 1 - 2 + 3 - 4 + 5 - 6 + 7 - ... + {n} is: {sum_of_series}")
Output:

Enter the value of n: 12
    The sum of the series 1 - 2 + 3 - 4 + 5 - 6 + 7 - ... + 12 is: -6
```


11. WAP to check if a number is prime or not.

```
Solution:
num = int(input("Enter a number: "))

if num < 2:
    is_prime = False
else:
    is_prime = True
    for i in range(2, int(num**0.5) + 1):
        if num % i == 0:
            is_prime = False
            break

if is_prime:
    print(f"{num} is a prime number.")
else:
    print(f"{num} is not a prime number.")
Output:

| Enter a number: 15
    15 is not a prime number.
```

12. WAP to print all the prime numbers between a limit. Lower Limit and upper Limit has to be given by the user. Sample Input and Output: Enter lower limit: 10 Enter upper limit: 20 Prime numbers between 10 and 20 are: 11,13,17,19

```
Solution:
lower limit = int(input("Enter lower limit: "))
upper limit = int(input("Enter upper limit: "))
print(f"Prime numbers between {lower limit} and {upper limit} are:", end=" ")
for num in range(lower limit, upper limit + 1):
  if num > 1:
    is prime = True
    for i in range(2, int(num**0.5) + 1):
       if num \% i == 0:
         is_prime = False
         break
    if is prime:
       print(num, end=", ")
print()
Output:
Enter lower limit: 2
Enter upper limit: 25
Prime numbers between 2 and 25 are: 2, 3, 5, 7, 11, 13, 17, 19, 23,
```


13. WAP to print Fibonacci series of first 20 elements. Some initial values of Fibonacci series are: 0 1 1 2 3 5 8...

```
Solution:

fibonacci_sequence = [0, 1]

while len(fibonacci_sequence) < 20:
    next_number = fibonacci_sequence[-1] + fibonacci_sequence[-2]
    fibonacci_sequence.append(next_number)

print("Fibonacci series of the first 20 elements:")

for number in fibonacci_sequence:
    print(number, end=" ")

Output:

Pibonacci series of the first 20 elements:
    0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181
```

14. WAP to input two numbers and print their LCM and GCD

```
Solution:
num1 = int(input("Enter the first number: "))
num2 = int(input("Enter the second number: "))
lcm = 0
gcd = 0
max num = max(num1, num2)
min_num = min(num1, num2)
for i in range(1, min num + 1):
  if num1 % i == 0 and num2 % i == 0:
    acd = i
lcm = (num1 * num2) // gcd
print(f"GCD of {num1} and {num2} is: {gcd}")
print(f"LCM of {num1} and {num2} is: {lcm}")
Output:
      Enter the first number: 15
\Gamma
      Enter the second number: 13
      GCD of 15 and 13 is: 1
      LCM of 15 and 13 is: 195
```


15. WAP to print first n odd numbers in descending order

```
Solution:
n = int(input("Enter the value of n: "))

if n <= 0:
    print("Please enter a positive integer for n.")
else:
    odd_numbers = []

for i in range(2 * n - 1, 0, -2):
    odd_numbers.append(i)

print(f"The first {n} odd numbers in descending order are: {', '.join(map(str, odd_numbers))}")

Output:

Enter the value of n: 9
    The first 9 odd numbers in descending order are: 17, 15, 13, 11, 9, 7, 5, 3, 1
```

16. WAP to print the following series: 1 -4 7 -10 ... -40

```
Solution:
start = 1
limit = -40

diff = -3

while start >= limit:
    print(start, end=' ')
    start += diff

Output:

1 -2 -5 -8 -11 -14 -17 -20 -23 -26 -29 -32 -35 -38
```

17. WAP to find if a number entered by user is Palindrome or not. Note: Palindrome numbers are those numbers which are same even when you reverse it. e.g. 121 is a palindrome number 135 is not a palindrome number

```
Solution:

num = int(input("Enter a number: "))

num_str = str(num)

reversed_str = num_str[::-1]

if num_str == reversed_str:
    print(f"{num} is a palindrome number.")

else:
    print(f"{num} is not a palindrome number.")

Output:

□ Enter a number: 9
    9 is a palindrome number.
```


18. WAP to find sum of the given sequence: 2/9 - 5/13 + 8/17 ... (print 7 terms)

```
Solution:
sum_of_sequence = 0
numerator = 2
numerator_difference = 3
denominator_difference = 4
num_terms = 7
add_term = True
for in range(num terms):
  term = numerator / (numerator + denominator_difference)
  if add term:
    sum_of_sequence += term
  else:
    sum of sequence -= term
  numerator += numerator_difference
  denominator_difference += 4
  add_term = not add_term
print(f"The sum of the sequence is: {sum_of_sequence:.4f}")
Output:
     The sum of the sequence is: 0.3551
```


19. WAP to find sum of the following sequence: 1 + 1! + 2! + 3! + ... +n!

```
Solution:
n = int(input("Enter a positive integer n: "))
if n < 0:
  print("Please enter a positive integer.")
else:
  sum sequence = 0
  factorial = 1
  for i in range(0, n + 1):
    if i > 0:
       factorial *= i
    sum_sequence += factorial
  print(f"The sum of the sequence is: {sum_sequence}")
Output:
      Enter a positive integer n: 12
\Gamma
      The sum of the sequence is: 522956314
```

20. WAP to find sum of the following sequence: 1 + 1/1! + 1/2! + 1/3! + ... + 1/n!

```
Solution:
n = int(input("Enter a positive integer n: "))

if n < 0:
    print("Please enter a positive integer.")

else:
    sum_sequence = 0
    factorial = 1

for i in range(0, n + 1):
    if i > 0:
        factorial *= i
        sum_sequence += 1 / factorial

print(f"The sum of the sequence is: {sum_sequence:.4f}")

Output:

Enter a positive integer n: 15
The sum of the sequence is: 2.7183
```